# Ca<sup>2+</sup> uptake and IP<sub>3</sub>-induced Ca<sup>2+</sup> release in permeabilized human lymphocytes

G. Eberl and K. Schnell

Institut für Physiologie, Universität Regensburg, D-8400 Regensburg, FRG

Received 10 July 1987; revised version received 20 August 1987

The <sup>45</sup>Ca<sup>2+</sup> uptake and <sup>45</sup>Ca<sup>2+</sup> release in saponin-permeabilized human lymphocytes were studied. An ATP-dependent Ca<sup>2+</sup> uptake into a nonmitochondrial, intracellular Ca<sup>2+</sup> store is observed which is approx. 2 orders of magnitude greater than the ATP-independent Ca<sup>2+</sup> uptake. The Ca<sup>2+</sup> uptake is inhibited by vanadate, but it is insensitive to oligomycin and ruthenium red. IP<sub>3</sub> induces dose-dependent <sup>45</sup>Ca<sup>2+</sup> release. For half-maximum Ca<sup>2+</sup> release 0.25–0.5 µM IP<sub>3</sub> is required. The results of our studies suggest that <sup>45</sup>Ca<sup>2+</sup> is predominantly stored within the endoplasmic reticulum of the lymphocytes.

Ca<sup>2+</sup>; Inositol phosphate; Lymphocyte; (Human)

### 1. INTRODUCTION

In various mammalian cells inositol 1,4,5trisphosphate (IP3) functions as an intracellular messenger [1,2]. Upon stimulation of an extracellular receptor, membrane-associated phosphatidylinositol 4,5-bisphosphate is split into diacylglycerol and IP<sub>3</sub>. The release of IP<sub>3</sub> initiates a cascade of events which finally results in the mobilization of intracellular Ca2+. Polyphosphoinositides participate in the activation of lymphocytes. Recently, the activation of mouse B-lymphocytes by an anti-Ig-induced release of IP3 and the concomitant increase in [Ca<sup>2+</sup>]<sub>i</sub> have been reported [3,4]. The receptor-transduced mobilization of intracellular Ca2+ in T-cells also seems to be mediated by IP<sub>3</sub> [5]. This paper is concerned with the 45Ca2+ uptake and IP3-induced 45Ca2+ release in saponin-permeabilized human lymphocytes.

Correspondence address: K. Schnell, Institut für Physiologie, Univ. Regensburg, D-8400 Regensburg, FRG

### 2. MATERIALS AND METHODS

Human lymphocytes from fresh blood of healthy adult donors were isolated by Ficoll-Paque density gradient centrifugation [6]. The isolated lymphocytes were washed twice with Hank's balanced salt solution [7]. In order to remove the contaminating monocytes,  $1 \times 10^7$  lymphocytes were suspended in 1 ml of a modified RPMI-1640 solution and kept overnight in polycarbonate dishes (pH 7.4, 20°C). The RPMI-1640 solution was supplemented with 20 mM Hepes, 10% (v/v) fetal calf serum and 10  $\mu$ g/ml gentamycin. The cell number was determined with a Coulter DN counter. The yield of lymphocytes ranges from  $1 \times$  $10^8$  to  $2 \times 10^8$  cells/500 ml blood. The cell population as assessed by morphological criteria consisted of pure, peripheral lymphocytes. The samples were entirely devoid of blood platelets, erythrocytes and lymphocytes. All experiments were executed with Saarstaedt polycarbonate centrifuge tubes.

Before experiments, the lymphocytes were washed once with about 10 ml buffer A (buffer A: 20 mM NaCl, 100 mM KCl, 5 mM MgSO<sub>4</sub>, 0.96 mM Na<sub>2</sub>PO<sub>4</sub>, 25 mM Hepes, 1 mM EGTA,

2% BSA).  $1 \times 10^7$  cells/ml buffer A were preincubated for 60 min and permeabilized by the addition of 150 µg/ml saponin and 3 mM ATP (5 min, pH 7.2, 37°C). Under these conditions nearly all lymphocytes become permeable for trypan blue. Subsequently,  $2 \times 10^7$  lymphocytes were incubated in 1 ml Ca2+/EGTA solution and labeled with <sup>45</sup>Ca<sup>2+</sup>. The Ca<sup>2+</sup>/EGTA solution consisted of buffer A plus  $490 \,\mu\text{M}$   $^{45}\text{Ca}^{2+}$  (spec. act.  $3 \mu \text{Ci}/490 \text{ nmol}$ ),  $5 \mu \text{g/ml}$  rotenone, 3 mM ATP, 5 mM creatine phosphate and 5 U/ml creatine phosphokinase which served as an ATPregenerating system. [Ca<sup>2+</sup>]<sub>f</sub> was adjusted to 180 nM according to Burgess et al. [8] if not indicated otherwise. Endogenous ATP production by the mitochondria was inhibited by rotenone.

The Ca<sup>2+</sup> uptake and Ca<sup>2+</sup> release in permeabilized lymphocytes were followed by withdrawing aliquots of  $100 \,\mu l$  each from the samples at appropriate time intervals. The aliquots were added to 1 ml ice-cold buffer B and the cells were sedimented by centrifugation (buffer B: 130 mM KCl, 5 mM MgCl<sub>2</sub>, 25 mM Hepes, 5 mM EGTA, pH 7.2). The pellet was washed once with 1 ml EGTA-free buffer B and the  $^{45}$ Ca<sup>2+</sup> was extracted with  $100 \,\mu l$  of 0.1% Triton X-100/1 N NaOH (60 min, 56°C). Upon neutralization of the extracts, the  $^{45}$ Ca<sup>2+</sup> was counted. The protein content of the samples was determined according to Lowry et al. [9].  $2.5 \times 10^7$  cells correspond to 1 mg cell protein.

<sup>45</sup>Ca<sup>2+</sup> and IP<sub>3</sub> were purchased from Amersham-Buchler (Braunschweig); rotenone, oligomycin, RPMI-1640, BSA, CP, CP kinase and Triton X-100 from Serva (Heidelberg); ruthenium red, Hepes, EGTA, Mg-ATP and vanadate from Sigma (Taufkirchen); and NaCl, KCl, MgSO<sub>4</sub>, Na<sub>2</sub>HPO<sub>4</sub>, NaH<sub>2</sub>PO<sub>4</sub>, HCl and NaOH of p.a. grade were from Merck (Darmstadt).

# 3. RESULTS

Lymphocytes were isolated from fresh human blood by density gradient centrifugation with Ficoll-Paque [8] and stored overnight in modified RPMI-1640 solution. Before experiments, the lymphocytes were washed and permeabilized by saponin. The lymphocytes then were incubated in a Ca<sup>2+</sup>/EGTA solution. The Ca<sup>2+</sup> uptake and

IP<sub>3</sub>-induced Ca<sup>2+</sup> release were assessed by using <sup>45</sup>Ca<sup>2+</sup>

Table 1 shows the ATP-dependent Ca2+ uptake in saponin-permeabilized lymphocytes. Ca<sup>2+</sup> uptake was initiated by adding 3 mM ATP to the cell suspensions. 45Ca<sup>2+</sup> within the cells was counted 45 min after the addition of ATP. Mitochondrial Ca2+-ATPase and mitochondrial substrate consumption were inhibited by oligomycin and ruthenium red, respectively. At [Ca<sup>2+</sup>]<sub>f</sub> 180 nM, the Ca2+ uptake is insensitive to oligomycin and ruthenium red, but on increasing [Ca2+]f an increasing fraction of the ATP-dependent Ca<sup>2+</sup> uptake is inhibited by oligomycin and ruthenium red. These results suggest that at a low [Ca<sup>2+</sup>]<sub>f</sub> <sup>45</sup>Ca<sup>2+</sup> is predominantly stored in a nonmitochondrial Ca<sup>2+</sup> pool while at a high [Ca<sup>2+</sup>]<sub>f</sub> a considerable fraction of <sup>45</sup>Ca<sup>2+</sup> is taken up by the mitochondria.

The time course of the ATP-dependent and ATP-independent Ca<sup>2+</sup> uptake in permeabilized lymphocytes is shown in fig.1. The ATP-dependent Ca<sup>2+</sup> uptake exhibits a continuous increase in intracellular <sup>45</sup>Ca<sup>2+</sup> over a period of approx. 60 min. Thereafter, a steady-state distribution of <sup>45</sup>Ca<sup>2+</sup> is attained. The maximum ATP-dependent Ca<sup>2+</sup> uptake, as assessed from the equilibrium distribution of <sup>45</sup>Ca<sup>2+</sup>, displays strong variations and ranges from 4 to 16 nmol/mg cell protein. This corresponds to 1.6–6.4 nmol/10<sup>7</sup>.

Table 1

Effect of mitochondrial Ca<sup>2+</sup>-transport inhibitors on ATP-dependent Ca<sup>2+</sup> uptake in permeabilized human lymphocytes

| [Ca <sup>2+</sup> ] <sub>f</sub> | Ca <sup>2</sup> ·<br>(nmol/m | Inhibition (%)              |    |
|----------------------------------|------------------------------|-----------------------------|----|
|                                  | Control                      | Oligomycin<br>ruthenium red |    |
| 180 nM                           | 3.8                          | 3.8                         | 0  |
| 234 nM                           | 7.8                          | 4.9                         | 37 |
| 758 nM                           | 208.9                        | 60.1                        | 71 |
| 1.32 µM                          | 323.7                        | 42.7                        | 87 |
| $3.30 \mu M$                     | 216.6                        | 27.9                        | 87 |

 $2\times10^7$  cells/ml Ca<sup>2+</sup>-EGTA solution. <sup>45</sup>Ca<sup>2+</sup> within the cells was counted 30 min after the addition of ATP. Mitochondrial Ca<sup>2+</sup> uptake was inhibited by 3  $\mu$ g/ml oligomycin plus 1 mM ruthenium red. [Ca<sup>2+</sup>]<sub>f</sub> as indicated. pH 7.2, 37°C

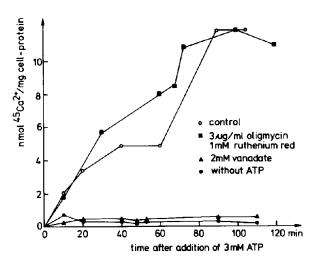



Fig.1. ATP-dependent and ATP-independent  $^{45}\text{Ca}^{2+}$  uptake in permeabilized lymphocytes.  $2 \times 10^7$  cells/ml  $\text{Ca}^{2+}\text{-EGTA}$  solution.  $[\text{Ca}^{2+}]_f = 180$  nM. pH 7.2, 37°C.

cells. The initial Ca<sup>2+</sup> uptake exhibits similar variations and ranges from 110 to 300 pmol/min per mg cell protein. The ATP-independent Ca<sup>2+</sup> uptake is approx. 2 orders of magnitude lower than the ATP-dependent Ca<sup>2+</sup> uptake and displays the features of nonspecific Ca<sup>2+</sup> binding to cell constituents.

The ATP-dependent uptake of <sup>45</sup>Ca<sup>2+</sup> is insensitive to oligomycin and ruthenium red, but is completely inhibited by vanadate (fig.1). Vanadate reduces both the initial <sup>45</sup>Ca<sup>2+</sup> uptake and maximum <sup>45</sup>Ca<sup>2+</sup> uptake of the cells at steady state. The vanadate concentrations for half-maximum inhibition of the ATP-dependent Ca<sup>2+</sup> uptake as obtained from the dose-response curves amount to about 0.25 mM. 2 mM vanadate causes almost complete inhibition of the <sup>45</sup>Ca<sup>2+</sup> uptake in permeabilized lymphocytes.

The IP<sub>3</sub>-sensitive Ca<sup>2+</sup> release was assessed by labeling the permeabilized lymphocytes for approx. 60 min with  $^{45}$ Ca<sup>2+</sup> until a steady-state distribution of  $^{45}$ Ca<sup>2+</sup> was reached. As shown in fig.2, IP<sub>3</sub> induces instantaneous  $^{45}$ Ca<sup>2+</sup> release in permeabilized lymphocytes. 0.5 and 1.0  $\mu$ M IP<sub>3</sub> cause Ca<sup>2+</sup> release of about 60 and 72%, respectively. 2.5  $\mu$ M IP<sub>3</sub> elicits maximum Ca<sup>2+</sup> release which amounts to about 80% of the ATP-dependent, intracellularly stored  $^{45}$ Ca<sup>2+</sup>. For half-maximum release of  $^{45}$ Ca<sup>2+</sup> from the IP<sub>3</sub>-sensitive, intracellular Ca<sup>2+</sup> pool, 250–500 nM IP<sub>3</sub> is re-

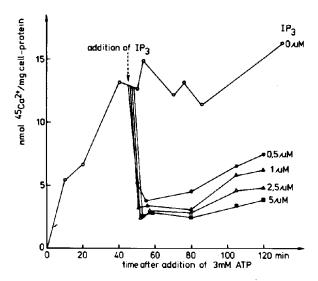



Fig.2. IP<sub>3</sub>-induced  $^{45}$ Ca<sup>2+</sup> release in  $^{45}$ Ca<sup>2+</sup>-labelled, permeabilized lymphocytes. 2  $\times$  10<sup>7</sup> cells/ml Ca<sup>2+</sup>-EGTA solution. [Ca<sup>2+</sup>]<sub>f</sub> = 180 nM. IP<sub>3</sub> was added as indicated. pH 7.2, 37°C.

Table 2

Effect of vanadate on IP<sub>3</sub>-induced Ca<sup>2+</sup> release and Ca<sup>2+</sup> reuptake in permeabilized lymphocytes

|                                                                                                          | $[^{45}Ca^{2+}]_{IP3}/[^{45}Ca^{2+}]_{IP3=0}$ (%) |          |          |          |  |  |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|----------|----------|--|--|
| [IP <sub>3</sub> ]                                                                                       | : 0.5 μM                                          | 1.0 µM   | 2.5 µM   | 5.0 µM   |  |  |
| 5 min after IP <sub>3</sub><br>80 min after IP <sub>3</sub><br>80 min after IP <sub>3</sub><br>plus 2 mM | 59<br>42                                          | 75<br>51 | 79<br>62 | 80<br>69 |  |  |
| vanadate                                                                                                 | 77                                                | 75       | 82       | 82       |  |  |

 $2 \times 10^7$  cells/ml incubation medium.  $[Ca^{2+}]_f = 180$  nM, pH 7.2, 37°C. Samples were incubated for 45 min. Subsequently, IP<sub>3</sub> or IP<sub>3</sub> + vanadate were added to the respective samples. Intracellular  $^{45}Ca^{2+}$  was counted before ( $[^{45}Ca^{2+}]_{IP_3=0}$ ) and after ( $[^{45}Ca^{2+}]_{IP_3}$ ) the addition of IP<sub>3</sub>. The Ca<sup>2+</sup> stored within the IP<sub>3</sub>-sensitive Ca<sup>2+</sup> pool of the cells amounts to 4.2 nmol/mg protein

quired. The IP<sub>3</sub>-induced release of <sup>45</sup>Ca<sup>2+</sup> is followed by <sup>45</sup>Ca<sup>2+</sup> reuptake. The exposure of lymphocytes to high doses of IP<sub>3</sub> decreases the rate of <sup>45</sup>Ca<sup>2+</sup> reuptake. This effect most probably should be attributed to the slow breakdown of IP<sub>3</sub> in our assay.

Vanadate augments the IP<sub>3</sub>-induced Ca<sup>2+</sup> release in permeabilized, <sup>45</sup>Ca<sup>2+</sup>-labeled lym-

phocytes (table 2), whereas oligomycin and ruthenium red have no effect on  $IP_3$ -induced  $Ca^{2+}$  release. 2.5–5.0  $\mu$ M  $IP_3$  elicits maximum  $Ca^{2+}$  release from the  $IP_3$ -sensitive  $Ca^{2+}$  pool, while in the presence of 2 mM vanadate, 0.5  $\mu$ M  $IP_3$  suffices for maximum  $Ca^{2+}$  release. The addition of vanadate has no direct, stimulating effect upon the  $Ca^{2+}$  release in permeabilized lymphocytes, but does inhibit the  $Ca^{2+}$  reuptake upon an  $IP_3$  stimulus.

## 4. DISCUSSION

According to our results, most of the ATPdependent, intracellularly stored <sup>45</sup>Ca<sup>2+</sup> appears to be stored within the endoplasmic reticulum (ER) of the lymphocytes which has a higher affinity for Ca<sup>2+</sup> than mitochondria. This corresponds to the Ca<sup>2+</sup> uptake in liver cells [8] and pancreatic acinar cells [10]. In addition, the ATP-dependent Ca<sup>2+</sup> uptake in permeabilized lymphocytes is inhibited by vanadate which is known to inhibit Ca<sup>2+</sup> uptake by the ER [11], but it is not susceptible to inhibitors of mitochondrial Ca<sup>2+</sup> transport [12,13]. The variations in Ca<sup>2+</sup> uptake in permeabilized lymphocytes could result from the permeabilization procedure or from differences in the Ca<sup>2+</sup>-transport capacity of the cells. We also have some evidence for individual differences in Ca<sup>2+</sup> uptake, but no systematic studies concerning this point have been performed. The maximum Ca<sup>2+</sup> release from the intracellular, IP<sub>3</sub>-sensitive Ca<sup>2+</sup> pool amounts to about 80% of the ATPdependent, intracellularly stored 45Ca2+. The remaining 20% of the accumulated 45Ca2+ is insensitive to IP3 and could be stored either in an IP<sub>3</sub>-insensitive part of the ER or within the mitochondria.

The significance of the IP<sub>3</sub>-mediated Ca<sup>2+</sup> release from an intracellular Ca<sup>2+</sup> store for the activation of lymphocytes is difficult to assess. For signal transduction, the Ca<sup>2+</sup> release from intracellular Ca<sup>2+</sup> stores appears to be negligible as compared to Ca<sup>2+</sup> influx across the lymphocyte plasma membrane [14]. On the other hand, in-

tracellularly stored Ca<sup>2+</sup> is more rapidly available for the cell and possibly can be stored in close vicinity to the Ca<sup>2+</sup> trigger for a biochemical reaction. Assuming a cell volume of 120  $\mu m^3$  and a cytosolic, intracellular [Ca<sup>2+</sup>]<sub>f</sub> of 100–200 nM under resting conditions, cytosolic Ca<sup>2+</sup> is 1.2  $\times$  10<sup>-20</sup>–2.4  $\times$  10<sup>-20</sup> mol/cell, while the Ca<sup>2+</sup> content of the intracellular, IP<sub>3</sub>-sensitive Ca<sup>2+</sup> pool is approx. 1.6  $\times$  10<sup>-16</sup>–6.4  $\times$  10<sup>-16</sup> mol/cell. Thus a single maximal IP<sub>3</sub> pulse could induce Ca<sup>2+</sup> release of 1.28  $\times$  10<sup>-16</sup>–5.12  $\times$  10<sup>-16</sup> mol/cell which could result in a transient increase of [Ca<sup>2+</sup>]<sub>i</sub> by approx. 4 orders of magnitude.

# **ACKNOWLEDGEMENTS**

This paper has been supported by the Deutsche Forschungsgemeinschaft.

## **REFERENCES**

- [1] Berridge, J.M. and Irvine, R.F. (1984) Nature 312, 315-321.
- [2] Berridge, M.J. (1984) Biochem. J. 220, 345-360.
- [3] Bijsterbosch, M.K., Meade, C.J., Turner, G.A. and Klaus, G.G.B. (1985) Cell 41, 999-1006.
- [4] Ransom, J.T., Marris, L.K. and Cambier, J.C. (1986) J. Immunol. 137, 708-714.
- [5] Imboden, J.B. and Stobo, J.D. (1985) J. Exp. Med. 161, 446-456.
- [6] Boyum, A. (1964) Nature 204, 793-794.
- [7] Hanks, J.H. and Wallace, R.E. (1949) Proc. Soc. Exp. Biol. Med. 71, 136.
- [8] Burgess, G.M., McKinney, J.S., Fabiato, A., Leslie, B.A. and Putney, J.W. jr (1983) J. Biol. Chem. 258, 15336-15345.
- [9] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [10] Streb, H., Irvine, R.F., Berridge, M.J. and Schulz, I. (1983) Nature 306, 67-69.
- [11] Simons, T.J.B. (1979) Nature 281, 337-338.
- [12] Prentki, M., Wollheim, C.B. and Lew, P.D. (1984)J. Biol. Chem. 259, 13777-13782.
- [13] Denton, R.M., McCormack, J.G. and Edgell, N.J. (1980) Biochem. J. 190, 107-117.
- [14] Tsien, R.Y., Pozzan, T. and Rink, T.J. (1982) J. Cell Biol. 94, 325-334.